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ABSTRACT

A cell phone video offers a low-cost non-contacting alternative to traditional accelerometer-based methods for monitoring the health
of plant operating equipment. The frequency bandwidth and video enhancement technology in modern-day cell phones have rendered
them ideal for use as a non-contacting measurement device in a plantwide route-based monitoring program.

During the past 30 years, trained neural networks have been used in a variety of applications to solve problems where the number of
possible solutions is overwhelming. A neural network must be trained with lots of data, and it will diagnose mechanical faults in
rotating machinery more accurately as it is trained with more vibration data

In this paper, it is first shown how the Operational Modal Analysis (OMA) mode shapes of a rotating machine are obtained by using
FRF-based curve fitting on vibration data extracted from a cell phone video recording of a rotating machine during operation. Then, a
database search method called FaCTs™ is used to identify various unbalance conditions of the rotating machine.

FaCTs™ functions in the same manner as a trained neural network. FaCTs™ uses the current mode shapes of a machine together
with a shape difference indicator (SDI) to find the closest match of the current mode shapes with mode shapes that were previously
labeled and archived in a database. FaCTs™ displays a bar chart of the ten closest matches of the current mode shapes with the
labeled mode shapes, thereby indentifying the current mechanical condition of a machine based on its mode shapes.

KEY WORDS

Artificial Intelligence (Al), Neural Network (NN), Time Waveform (TWF), Digital Fourier Transform (DFT), Operational Modal
Analysis (OMA) mode shape, Operating Deflection Shape (ODS), Degree of Freedom (DOF), Frames Per Second (fps), Auto Power
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ROTATING MACHINE

In this paper, FaCTs™ is used to uniquely identify nine different unbalance cases of the rotating machine shown in Figure 1. The
machine has a variable speed motor connected to the rotor with a rubber belt. The motor speed was adjusted so that the rotor speed
was approximately 1000 RPM throughout all the video recordings.
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Figure 1. Rotating Machine Showing Unbalance Screws Added to Its Rotors
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INTRODUCTION

Most power plants, oil refineries, and manufacturing plants worldwide have implemented route-based machinery health monitoring
programs for accessing the health of their rotating equipment. Digital vibration signals are the primary data used to detect and
diagnose faults in operating equipment.

Traditionally, machine health monitoring has been done by attaching accelerometers to the surfaces of the operating equipment and
acquiring vibration signals from the accelerometers using a portable digital spectrum analyzer. This method of data acquisition is time
consuming and expensive compared with a cell phone video recording. Furthermore, because it is non-contacting, a cell phone can
record vibration of machine parts that are too hot or inaccessible for attaching accelerometers.

In previous papers [3], [4] we applied traditional signal processing methods to the TWFs extracted from the frames of a video to
display its ODS’s in animation. Time-based ODS’s can be displayed by sweeping a cursor through the TWFs, and frequency-based
ODS’s can be displayed using sinusoidal modulation of the ODS at a cursor position in the DFTs. Deformations can be displayed at
slower speeds with higher amplitudes to make machine vibration easier to visualize and understand.

In a previous paper [4], a new database search method called FaCTs™ was introduced, and was used to uniquely identify nine
different unbalance cases of a rotating machine using only ODS data from the tops of the two bearing blocks on the machine. In this
paper FaCTs™ js used to uniquely identify the same nine unbalance cases using the OMA mode shapes of the machine.

These results demonstrate the reliability and repeatability of OMA mode shapes extracted from cell phone videos for machine health
monitoring. FaCTs™ also functions like a neural network in that it becomes more accurate as more labeled and archived OMA mode
shapes are added to an archival database.

ARTIFICIAL INTELLIGENCE (OR MACHINE LEARNING)

Acrtificial Intelligence, popularly known as Al, uses a trained neural network (NN) to infer the meaning of a set of data. For example,
the trained inference software in a Tesla car uses data from eight digital cameras to control the car.

Vibration data is primarily used to diagnose the health of rotating machinery. Vibration data in the form of TWFs, DFTs, ODS-FRFs,
ODS’s and Mode Shapes can be used to train an NN. But to accurately diagnose a mechanical fault, an NN must be trained with a lot
of vibration data.

Here are a couple definitions of Al from a Google search on the Internet.

e Aneural network is a machine learning model that uses a network of interconnected nodes, or artificial neurons, to process
data in a way that mimics the human brain.

e A neural network is a method in artificial intelligence (Al) that teaches computers to process data in a way that is inspired by
the human brain. It is a type of machine learning (ML) process, called deep learning, that uses interconnected nodes or
neurons in a layered structure that resembles the human brain. Machine Learning (ML) using an NN mimics the learning of
the human brain. An NN is depicted in Figure 2

Hidden Layers

Figure 2. A Neural Network
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Lots of labeled input data is required to train an NN

November 15, 2024

To diagnose mechanical faults, an NN must be trained with data that is uniquely associated with a mechanical fault

When vibration data is input to an Inference Engine (a trained NN), it diagnoses a mechanical fault, as shown in Figure 3.
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Figure 3. NN Training & Inference Engine

TWFs & DFTs

When a video is processed in MEscope [8], a rectangular grid of points with rectangular surfaces between them is created. Frames of
the video are attached to this surface during animated display of ODS’s extracted from the video. Using a rectangular point grid,
millions of pixels in each frame of a cell phone video are processed to extract TWFs for the horizontal & vertical motion of
thousands of points in the point grid. Grid points with little or no motion, (like background points), are hidden and their linked TWFs
are removed from further analysis. A point grid with background points hidden is shown in Figure 4.

A DFT is calculated for each TWF that is extracted from the video. Time-based ODS’s are displayed in animation from the TWFs
using a sweeping Line cursor. Frequency-based ODS’s are displayed in animation from the DFTs using sine dwell modulation of the
ODS at the cursor position. The magnitude & phase of the ODS at selected points can also be displayed, as illustrated in Figure 4.
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Figure 4. First-Order ODS Animated from DFTs
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ODS-FRFs

A unique frequency domain function, called an ODS-FRF, can be calculated from each response TWF extracted from a video. A set
of ODS-FRFs calculated from the TWFs is typically more accurate because spectrum averaging can be used to reduce extraneous
noise from the ODS-FRFs.

The magnitude of an ODS-FREF is the APS of the response DOF at a grid point. The phase of the ODS-FRF is the phase of the XPS
between the response DOF and the DOF of any reference grid point.

ODS-FRFs carry the same displacement units as the response TWFs from which they are calculated. But because it is a frequency
domain function, an ODS-FRF can be accurately differentiated to velocity units by multiplying it by the frequency variable.

| Vibration in velocity units is commonly used by vibration analysts to quantify vibration levels in rotating equipment.

LAW OF THE FFT

One of the laws of the FFT algorithm is that Af = 1/T, where Af is the frequency difference between samples of an ODS-FRF, and T
is the time length of TWF data from which the ODS-FRF was calculated. For example, if an ODS-FRF is calculated from TWF data
over a 15 second period, the frequency resolution (Af) of the ODS-FRF is 60/15 = 4 RPM.

To increase the frequency resolution of an ODS-FRF, TWF data over a longer period T is required. Therefore, the video from which
the TWFs are extracted must be recorded over a longer period T.

BLK: Bearing ODS-FRFs - 36 ODS-FRFs p—| Y @
Magnitude in v 9] M23s ops-rre. || MAS

I ~
[ Frstorer | ! i S| vikie | Dok | e | Mo | Lee | e | |y
L10114, RPM J - Me12 Yes] 331 in |v| ODSFRF v. 1 =) Cross v
0.00085 in M#13 Ves| 4X[4] in |v| ODS-FRF v 1[5 Cress v
1014 k5% were [Wve] s o || oosrr [ 1 5 om v
00007 mets [Wves] 4141 in v ODSFRF v 1 Cross v/
M=16 Ves | 4Y[4] in v ODS-FRF v 1 Cross v
M#17 Yes| 1X[5] in |w| ODS-FRF v 1 Cross |~
Mete [Mves] V(5] in v ODSFRF v 1 Cross v
Me219 Ves | 2X[5] in v ODS-FRF v 1 Cross v
Ms20 Yes | 2V([5] in v ODS-FRF v 1 Cross v
Me2 [Mves] X6 in v onsrre [ 1 Cross v
ME2 Yes | 1Y[6] in v ODS-FRF v 1 Cross v
Aliased Second wezs [MVes] 2061 in v ODSFRF v 1 Cross
000045 Order M2 ([Wves] 2¥(6] in |v| ODSFRF v 1 Cross v
1572 RPM a M=25 Ves| k) in v oosrrr v 1 Cross |
Aliased Third “ w2 [Mves] 1Y in v| ODSFRF v. 1 Cross v
Order | Me27 Yes | 2X[7] in v ODS-FRF v 1 Cross v
564 RPM Me28 Yes| 2¥[7] in |v| ODS-FRF v 1 Cross |~
N M0 [Mves] xia in v oosrRe v [ 1 Cross v
- Me30 Ves | 1Y[8 in v ODS-FRF v 1 1055
f \ Ms31 Yes| 2X[8] in |w| ODS-FRF v 1
r’l \ J ‘ M2 [ ves] 2V[8) in v ODSFRF v 1
000015 l ﬂ[ \ I l , mes3 [Wves] X8 in v ODSFRF v 1
" i st W] v 5 oo .
”U \I’\f\ ! l“,}‘\! \. ‘ \ N \ A [ Mes [ ves] (9] in v ODSFRF v 1
SE- Lj v \/JM vy V‘V\j W \"\J‘\}'\/\f\'ﬂ\/\; J\/"\r‘-«/\._,/\/\/\/“\/ 2V av! "M Ms36 Yes| 2v(9) in |~ oosrrr v [N 1
o

<
0 200 400 600 800 w 1000 1200 1400 1600 Show All (] Selected [] Visible [] Label [] Has DOF
M

Figure 5. ODS-FRF Showing First Three Order Peaks.

ALIASED ORDER PEAKS

| A limitation of any video recording is that anti-alias filtering cannot be used to remove high-frequency signals from the video.

Without anti-alias filtering, machine order peaks greater than one-half the sampling frequency, (called Fmax), are folded around
Fmax and appear at lower frequencies in the ODS-FRFs, as shown in Figure 5.

All order-related resonance peaks between Fmax & 2x Fmax are folded around (wrapped around) Fmax and appear at a lower
frequency in the frequency band (0 to Fmax). Aliasing of higher frequencies occurs in both DFTs and ODS-FRFs.

The ODS-FRF shown in Figure 5 was calculated from a TWF that was extracted from a video that was sampled at 60 fps, or 3600
RPM. Therefore, the Fmax of the ODS-FRF is 1800 RPM. The first-order peak is at the machine running speed and is clearly visible
at 1014 RPM. The second order resonance peak should be at 2028 RPM and third order resonance peak should be at 3042 RPM, but
they are folded around 1800 RPM and both peaks are clearly visible at lower frequencies in the ODS-FRF.

The aliased frequency of any aliased order between Fmax & 2x Fmax can be calculated using a simple formula.
e Second order aliased frequency =» 1800 - (2028 - 1800) =» 1572 RPM
e Third order aliased frequency =» 1800 - (3042 - 1800) =» 558 RPM

The ODS-FRF in Figure 5 was calculated from a TWF with a 10-second length T. Therefore Af = (1/10) Hz or 60/10 = 6 RPM. So,
the aliased frequency of the third order peak is within one (Af) of its calculated value.
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CURVE FITTING THE ODS-FRFS

ODS-FRFs can be curve fit using an FRF-based curve fitter if they have been previously filtered using a special window. In
MEscope [9] this filter is called a DeConvolution window. This filter reshapes an ODS-FRF so that it closely resembles an FRF and
therefore can be curve fit using FRF-based curve fitting. An FRF-based curve fit of the three order peaks in an ODS-FRF is shown
in Figure 6. In the upper left-hand graph, the red curve fitting function is overlaid on a magnitude plot of the ODS-FRF.

The aliased frequencies of the second and third orders are correctly estimated by curve fitting the ODS-FRF. More details on curve
fitting ODS-FRFs are given in a companion paper [1].
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Figure 6. Curve-fit of ODS-FRFs.
MODE SHAPES AT MONITORED POINTS

Although curve fitting was applied to all the ODS-FRFs calculated from the videos of the nine unbalance cases of the rotating
machine, only the mode shape components are five grid points were labeled and archived in the machine database. These five points
are labeled in Figure 7.

.o

Figure 7. Point Grid Showing Monitored Points.
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DAMPING REMOVAL

DeConvolution windowed is necessary before using an FRF-based curve fitter on a set of ODS-FRFs. But DeConvolution
windowing adds a specific amount of damping to each OMA mode shape. Therefore, following curve fitting, when the OMA mode
shapes are stored into a Shape Table in MEscope [9], the damping added by DeConvolution windowing is removed from them. This is
shown in Figure 8.
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Figure 8. Damping is Removed when OMA Mode Shapes are Saved.
FaCTs™

FaCTs™ [4] is a database search algorithm used by MEscope [9]. FaCTs searches a database of labeled mode shapes, each mode
shape associated with a particular machine fault. When a new mode shape is saved into the archival database, FaCTs searches the
database of labeled mode shapes and displays a bar chart of the ten closest matching mode shapes together with the mechanical fault
associated with each labeled mode shape.

FaCTs™ yses an algorithm called the Shape Difference Indicator (SDI) [8]. SDI calculates a correlation coefficient between two
complex-valued shape vectors. FaCTs finds the ten closest matching mode shapes in the archival database based on the SDI value
between a current mode shape and each labeled mode shape in the database.

FaCTs has values between 0.0 and 1.0

FaCTs = 1.0 = two mode shapes are identical
FaCTs >=0.9 =» two mode shapes are similar
FaCTs < 0.9 = two mode shapes are different

BASELINE CASE

When no unbalance screws were added to either rotor of the rotating machine in Figure 1, its mode shapes were labeled as the
Baseline case. When the Baseline case is archived into the database, the FaCTs bar chart in Figure 9 clearly identifies it by its unique
OMA mode shapes compared to the mode shapes of the other unbalance cases. Its FaCTs bars with all the other unbalance cases are
much less than 1.0.
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.ﬂ]_FaCTS @ Current & X

Figure 9. Baseline OMA Mode Shapes Versus Other Eight Unbalance Cases

Figures 10 through 18 show the FaCTs bar charts for the eight unbalance cases where screws were added to either the Inner or Outer
rotor. Each unbalance case was uniquely identified by FaCTs because its corresponding OMA mode shapes were unique when
compared to the OMA mode shapes of the other unbalance cases.

But there is one exception. Unbalance cases with 2 Inner screws and 3 Inners screws have a FaCTs bar of 1.0, indicating that the
OMA mode shapes for these two cases are essentially the same.
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Figure 10. One Outer Screw
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Figure 11. Two Outer Screws
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Figure 13. Three Outer Screws
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Figure 14. Four Outer Screws
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Figure 15. One InnerScrew
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Figure 17. Three InnerScrews
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Figure 18. Four InnerScrews
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CONCLUSIONS

Nine different unbalance cases were created on a rotating machine by adding screws to its Inner and Outer rotors. The first case with
no screws added was labeled as the Baseline case. In each case, a 16 second cell phone video was recorded, with the machine running
at approximately 1000 RPM.

Using MEscope [9], TWFs were extracted from each cell phone video and ODS-FRFs were calculated from the TWFs for each
unbalance case. To reduce noise in the ODS-FRFs, five spectrum averages and overlap processing were used to calculate the ODS-
FRFs. Then, the ODS-FRFs were curve fit using FRF-based curve fitting and the OMA mode shapes for the first three machine
orders were labeled and stored in an archival database.

The first order OMA mode shape and the mode shapes of the aliased second and third orders were archived. Each set of three
mode shapes was labeled with its corresponding unbalance case.

Then, when the OMA mode shapes for each case were again calculated and stored into the archival database, FaCTs correctly
identified each case by calculating its SDI value with each labeled set of OMA mode shapes in the database. This method of
numerically comparing a current set of OMA mode shapes with sets of labeled OMA mode shapes uniquely identified each of the
nine unbalance cases using only ten mode shape components from five points on the video point grid of the machine.

This low-cost approach using cell phone videos and FaCTs can be used by any plant maintenance department for monitoring the
health of its rotating equipment and accurately identifying machine faults.
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