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ABSTRACT

Everyone has a cell phone in their pocket which has a video camera in it. A cell phone video is a low-cost, non-contacting way of
recording the vibration of rotating machinery and the resonant vibration of mechanical structures. A cell phone video is a quick way to
visualize vibration and complement other ODS and Modal testing methods.

For this paper, ODS-FRF measurement functions were calculated from time waveforms (TWFs) that were extracted from cell phone
videos of a rotating machine. Then the ODS-FRFs were curve fit using FRF-based curve fitting to yield 2D OMA mode shapes of
the machine. Two sets of 2D OMA mode shapes were obtained from videos recorded at right angle views of the machine, two from
the Side and two from the Top.

First, two different shape correlation methods were used to confirm the validity of the 2D mode shapes obtained from the two
videos of each view.

Then, 3D mode shapes were created for each view by adding mode shape components for their missing third direction using
components from the 2D mode shapes from the other view. The only requirement for preserving the magnitudes & phases of the
missing mode shape components is that the ODS-FRFs share a common reference DOF.
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ROTATING MACHINE

The test article used for this paper is shown on Figure 1. The machine speed remained at approximately 1000 RPM throughout all the
cell phone video recordings.

All cell phone videos were recorded with one unbalancing screw added to each machine rotor. Previous papers [1], [2] presented
results where different numbers of screws were added to the rotors of a similar rotating machine to create different unbalance cases
and uniquely identify them using ODS’s and mode shapes obtained from cell phone videos.

Figure 1. Rotating Machine With Unbalance Screws Added to Its Rotors
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INTRODUCTION

The traditional method of measuring machine vibration using accelerometers and multichannel data acquisition is more expensive and
time-consuming to implement compared to recording a cell phone video. Furthermore, because it is non-contacting, a cell phone video
can record vibration of structural parts that are too hot, too dangerous, or are not accessible for attaching accelerometers.

In a previous paper [2], 3D mode shapes were created by curve fitting FEA mode shapes to the 2D OMA mode shapes of a rotating
machine. That approach also showed how several FEA mode shapes participate in each order-based mode shape obtained from a cell
phone video. In this paper, 3D OMA mode shapes are created by combining mode shape components obtained from two cell phone
videos recorded at right-angle-views of a rotating machine.

TWFs & DFTs

When a raw video is processed in MEscope [10], a rectangular grid of points is created and the horizontal & vertical deflections of
millions of pixels in each frame of the raw video are processed to extract TWFs of the horizontal & vertical deflections of thousands
of points in the point grid.

Time-based ODS’s are displayed in animation by sweeping a Line cursor through the TWFs. A DFT is calculated from each TWF,
and frequency-based ODS’s are displayed in animation using sinusoidal modulation of the ODS at a cursor position in the DFTs.
These Video ODS animations allow vibration to be visualized at slower speeds with higher deflection amplitudes.

Using a point grid, the magnitude & phase of an ODS at selected grid points can be displayed during a Video ODS animation, as
shown in Figures 2 & 3.
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Figure 2. Top View of the First-Order ODS Animated from DFTs
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Figure 3. Side View of the First-Order ODS Animated from DFTs
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The magnitudes & phases of the ODS extracted from the Top view video in Figure 2 show that the motor is vibrating at 0.57 in/s in
the Y-direction at the drive end of the motor. The magnitudes & phases also show that the bearing blocks are in-phase with the motor
in the Y-direction and are 90 degrees out-of-phase with the motor in the X-direction.

ALIASED ORDER PEAKS

| No low-pass filtering is used to remove high-frequency vibration signals from a raw video recording.

Without low-pass filtering, machine resonance peaks at frequencies above one-half of the video recording frequency, (the fps
camera setting), are folded around one-half of the fps, (called Fmax), and appear at frequencies below Fmax in the DFTs. Aliased
order peaks are shown in both Figures 2 & 3.

All machine-order resonance peaks between Fmax & 2x Fmax are folded around (wrapped around) Fmax and appear at lower
frequencies in the frequency band (0 to Fmax). Aliasing of higher frequencies occurs in all frequency domain functions, including
DFTs and ODS-FRFs.

The magnitude envelope of the DFTs is shown in Figures 2 & 3. Each DFT was calculated from a TWF that was extracted from a
raw video that was sampled at 60 fps, or 3600 RPM. Therefore, Fmax of the DFTs is 1800 RPM.

The first-order peak at the machine’s running speed is clearly visible at approximately 1000 RPM. The second order peak should be
at about 2000 RPM, and the third order peak at about 3000 RPM, etc. The aliased frequency of an order higher than Fmax can be
calculated from Fmax and its expected order frequency.

e Second order aliased frequency: (2000-1800) = 200 =» 1800-200 = 1600 RPM
e Third order aliased frequency: (3000-1800) = 1200 =» 1800-1200 = 600 RPM
e  Fourth order aliased frequency: (4000-3600) = 400 =» 3600-400 = 3200 =» 3200-1800 = 1400 =>» (1800-1400) = 400 RPM

Aliased order peaks for the second & third orders are clearly visible at their aliased frequencies in the DFTs. The aliased 2000
RPM order appears at 1600 RPM, and the aliased 3000 RPM order appears at 600 RPM. Other peaks in the DFTs are evidence of
aliased higher orders or structural resonances.

ODS-FRFs

A unique frequency domain function, called an ODS-FREF, can be calculated from each TWF extracted from a video. Spectrum
averaging is used to remove random noise and non-linearities which appear as random noise from an ODS-FRF. Hanning
windowing is also used to reduce signal leakage from the resonance peaks and to enable FRF-based curve fitting.

The magnitude of an ODS-FRF is the APS of a response DOF at a grid point. The phase of an ODS-FRF is the phase of the XPS
between the response DOF and a reference DOF of the point grid.

An ODS-FRF has units of displacement, which are the same as the TWF from which it is calculated.

An ODS-FRF can be differentiated to velocity units by multiplying it by the frequency variable. Vibration in velocity units is
commonly used to quantify vibration levels in rotating equipment.

One of the laws of the FFT algorithm is Af = 1/T, where Af is the firequency resolution between samples of an ODS-FRF, and T is
the time length of TWF data from which the ODS-FRF was calculated. For example, if an ODS-FRF is calculated from a TWF
using 25 seconds of uniformly sampled data, the frequency resolution (Af) of the ODS-FREF is 60/25 or 2.4 RPM.

To increase the frequency resolution, (reduce Af), of an ODS-FRF, TWF data must be acquired over a longer period T. This means
that the raw video from which TWFs are extracted must be recorded over a longer period T.

ODS-FRFs From the Motor and Bearing Blocks

ODS-FRFs were calculated from the TWFs for four selected points. two on the top of the motor, and one on the top of each bearing
block, as shown in Figures 2 & 3. The ODS-FRFs were calculated using 1600 TWF samples per average, 5 spectrum averages, and a
Hanning window was applied to each average to reduce leakage from the resonance peaks.

The magnitude & phase of a typical ODS-FRF are shown in Figure 4.

Notice that the first & aliased second order peaks are at their expected frequencies, but there is a peak at about S00 RPM which is
not the aliased frequency of the third or fourth order. None the less, this resonance peak can be curve fit to obtain its OMA mode
shape just like the order-based resonance peaks.
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Figure 4. ODS-FRF Showing First Order & Aliased Second Order Peak

CURVE FITTING THE ODS-FRFS

January 6, 2026

If they have been windowed with a special window beforehand, ODS-FRFs can be curve-fit using an FRF-based curve fitter. This

window is called a Deconvolution window in MEscope [10].

OMA mode shapes can be obtained from a set of ODS-FRFs if they are windowed using a Deconvolution window before FRF-

based curve fitting is applied to them.

An FRF-based curve fit of an ODS-FREF is shown in Figure 5. In the left-hand graph, the red curve fitting function is overlaid on

the magnitude & phase plots of the ODS-FRF.
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Figure 5. Curve Fit of an ODS-FRF
MAC & SDI CORRELATION COEFFICIENTS

OMA mode shapes were obtained from two video recordings of a Side view and from two video recordings of the Top view of the
rotating machine. Each mode shape has eight complex-valued components which are the X & Y deflections at the four chosen grid

points, two on the motor, and one on the top of each bearing block.

To confirm the validity of the mode shapes obtained from two videos of the same view, the mode shapes were correlated with one
another using two different shape correlation coefficients, the Modal Assurance Criterion (MAC) and the Shape Difference

Indicator (SDI).
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Both MAC & SDI have values between 0 & 1. A value of “1” means that two mode shapes are the same. A MAC or SDI value less
than “0.9” means that two shapes are different from one another.

The MAC & SDI values between the OMA mode shapes from the two Side view videos are shown in Figure 6 and from the two Top

view videos in Figure 7.

MAC & SDI - 2D MODE SHAPES FROM TWO VIDEOS

In Figure 6, the mode shapes obtained from two Side view videos correlate well, with all diagonal MAC & SDI values above 90%.
The low off-diagonal MAC & SDI values indicate that each OMA mode shape has magnitudes & phases that are different from those

of the other two mode shapes.
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In Figure 7, the mode shapes from two Top view videos of the rotating machine are correlated using MAC & SDI. All three mode

Figure 6. MAC & SDI of 2D Mode Shapes From Two Side View Videos

shapes obtained from the two Top view videos correlate with diagonal MAC & SDI values above 95%.
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CREATING 3D MODE SHAPES USING A COMMON DOF

It can be seen from Figures 2 & 3 that the X-axis, (the direction of the shaft of the machine), is the same in both the Side & Top

views. Therefore, residue mode shape components derived from ODS-FRFs with the same reference DOF can be copied from the
mode shapes from one view to the mode shapes of the other view. In this case, 3X, (the horizontal motion of point 3 on the motor),
was used as the reference DOF for calculating ODS-FRFs from both the Top and Side views of the machine.

January 6, 2026

From inspection of Figure 2, the Y-direction of motion in the Top view is the same as the negative Z-direction in the Side view.
From inspection of Figure 3, the Y-direction of motion in the Side is the same as the Z-direction of motion in the Top view.

Therefore, 3D mode shapes for the Side view were created by adding the Y-direction mode shape components from the 2D mode
shapes from the Top view to the 2D mode shapes from the Side view with negative Z-direction roving DOFs.

Likewise, 3D mode shapes for the Top view were created by adding the Y-direction mode shape components from the 2D mode
shapes from the Side view to the 2D mode shapes from the Top view with Z-direction roving DOFs.

The 2D mode shapes from the Top view are shown on the left side in Figure 8. The selected Y-direction DOFs from the Side view
are shown in the middle, and the 3D mode shapes of the Top view are shown on the right side of Figure 8.
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Figure 8 2D Top View Mode Shapes, Selected Side View DOFs, and 3D Top View Mode Shapes
ANIMATED DISPLAY - 3D MODE SHAPES FROM TWO SIDE VIEW VIDEOS

In Figure 9, the magnitudes & phases of the first-order 3D mode shape from both Side view videos are shown during shape animation.
In the X-direction, the motor and inner bearing block are in-phase with one another, and the motor and outer bearing block are
180 degrees out-of-phase with one another. In the Y-direction, the front end of the motor is in-phase with both bearing blocks and
the back end of the motor is 90 degrees out-of-phase with both bearing blocks. In the Z-direction, both ends of the motor and
both bearing blocks are all in-phase with one another, indicating a rocking motion of the machine in the Z-direction.
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Figure 9 Animated Deflection of the First-Order 3D Mode Shapes From Both Side View Vidoes

ANIMATED DISPLAY - 3D MODE SHAPES FROM TWO TOP VIEW VIDEOS

In Figure 10, the magnitudes & phases of the first-order 3D mode shape from both Top view videos are shown during shape
animation. In the X-direction, the motor is 90 degrees out-of-phase with both bearing blocks. In the Y-direction, the motor and both
bearing blocks are in-phase with one another. This agrees with the rocking motion of deflection in the Z-direction of the 3D mode

shapes from the Side view. In the Z-direction, the front end of the motor is in-phase with both bearing blocks and the back end is
out-of-phase. This agrees with the Y-direction of deflection of the 3D mode shapes from the Side view.
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Figure 10. Top View - Animated Deflection of the First-Order 3D Mode Shapes
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MAC & SDI - 3D MODE SHAPES FROM TWO TOP VIEW VIDEOS

In Figure 11, the MAC & SDI values of the 3D mode shapes from the two Top view videos correlated with diagonal MAC & SDI
values above 95%. The low off-diagonal MAC & SDI values indicate that the magnitudes & phases of each mode shape are quite
different compared with the other two mode shapes.
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MAC & SDI - 3D MODE SHAPES FROM TWO SIDE VIEW VIDEOS

In Figure 12, the MAC & SDI values of the 3D mode shapes from the two Side view videos correlated with diagonal MAC & SDI
values above 90%, except the 500 RPM machine resonance mode shape which correlated with an SDI value of 87%.
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CONCLUSIONS

In this paper, we extracted 2D mode shapes from two videos of the Side view and two from the Top view of a rotating machine while
it was running at approximately 1000 RPM. TWFs were extracted from the videos, and ODS-FRFs were calculated from the TWFs
using 5 spectrum averages and 95% overlap processing. Before the spectrum averaging, a Hanning window was applied to the
TWEFs to reduce signal leakage from the resonance peaks.

ODS-FRFs were calculated for two points on the motor and a point on the top of each bearing block. The ODS-FRFs contained three
distinct resonance peaks, the first-order peak at about 1000 RPM, the aliased second-order peak at about 1600 RPM, and a machine
resonance peak at about 500 RPM.

After the ODS-FRFs were windowed using a Deconvolution window, 2D mode shapes of the rotating machine were identified by
applying FRF-based curve fitting to the windowed ODS-FRFs from each video.

The mode shapes from the two videos for each view were then correlated using two correlation coefficients, the Modal Assurance
Criterion (MAC) [7], and Shape Difference Indicator (SDI) [8]. All the mode shape pairs from the two videos correlated with
coefficients about 90%.

3D mode shapes were then created by using components of the 2D mode shapes because both the Top & Side view videos shared a
common X-axis along the shaft of the machine. The common reference DOF (3X) was used in all the ODS-FREF calculations.

If all ODS-FRFs are calculated using the same reference DOF, then all magnitudes & phases are preserved among the ODS-FRFs
and therefore among the mode shapes obtained by curve fitting the ODS-FRFs.

3D mode shapes of the Side view of the machine were created by adding the Y-direction components of the 2D mode shapes from the
Top view as Z-direction components of the mode shapes of the Side view. Likewise, 3D mode shapes of the Top view were created
by adding the Y-direction components of the 2D mode shapes from the Side view as Z-direction components of the mode shapes of
the Top view.

Finally, the 3D mode shapes created for both the Top & Side views were correlated using the MAC & SDI correlation methods. All
3D mode shapes correlated with values above 90%, but with one exception. The 500 RPM machine resonance mode shapes
correlated with an SDI value of 88%, meaning that the magnitudes & phases of that 3D mode shape were slightly different from one
another.
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